Large Dynamic Range Electromagnetic Field Sensor based on Domain Inverted Electro-Optic Polymer Directional Coupler

> Alan X. Wang Ray T. Chen Omega Optics Inc., Austin, TX

Application of Electric Field Sensors:

- Electromagnetic Attack Alarming
- Medical Apparatuses
- Microwave-Integrated Circuit Testing
- Ballistic Control
- Health Protection (<100KHz)</p>

Electronic Sensor v.s. Photonic Sensor

Drawbacks of Conventional Electronic Sensor:

Disturbance from electrical cables Narrow bandwidth Bulky size

- Free of disturbance to EM waves
- Broad bandwidth
- Compact size
- Precise measurement

Domain Inverted E-O Polymer Directional Coupler with Super High Dynamic Range

DARPA MORPH E-O Polymer

Domain Inverted Y-fed Directional Coupler

What is E-O Polymer Materials?

-5-

Materials Comparison

Materials	Polymers	Si/SOI	III-V	LiNbO ₃
Optical Loss (dB/cm @1550nm)	~1	0.2	~0.5	0.2
E-O efficiency (pm/V)	450	N/A	<5	30
Bandwidth (GHz)	110	40	30	40
Fabrication Process	Various	CMOS	RIE	Ti diff.
Integration	Easy	Standard	Difficult	No
Cost	Low	Low	Highest	High
Reliability	Moderate	High	High	High
Improvement Potential	Yes	No	No	No

> Design of Domain Inverted E-O Polymer **Directional Coupler Nonlinear Distortion in RF Photonics**

-7-

Y-fed Directional Coupler based on Domain-Inverted Waveguide

$$\begin{bmatrix} R_o \\ S_o \end{bmatrix} = M_2 M_1 \begin{bmatrix} R_i \\ S_i \end{bmatrix} = \begin{bmatrix} A_2 & -jB_2 \\ -jB_2^* & A_2^* \end{bmatrix} \begin{bmatrix} A_1 & -jB_1 \\ -jB_1^* & A_1^* \end{bmatrix} \begin{bmatrix} R_i \\ S_i \end{bmatrix}$$

R, S: Complex amplitude

H. Kogelnik and R. V. Schmidt, "Switches directional couplers with alternating $\Delta \beta$ ", *IEEE J. of Quantum Electron.*, vol. 12, pp. 396-401, July 1976

$$|R|^{2} = f(V) = \frac{1}{2} + \sum_{n=1}^{\infty} h_{n}V^{n}$$
$$h_{n} = \frac{1}{n!} \frac{d^{n} f(V)}{dV^{n}} \quad \text{are the Taylor coefficients}$$

Analytical Methods:

- Reduced simulation work
- Full spectrum coverage
- Small errors

Expression and amplitude of the signals from the Y-fed directional coupler

 Signal
 Frequency
 Amplitude (up to the 7th order expansion)

 DC
 0
 1/2

 Fundamental
 f_1 , f_2 $\frac{1225}{64}h_7a^7 + \frac{25}{4}h_5a^5 + \frac{9}{4}h_3a^3 + h_1a$

 2nd Harmonic
 $2f_1$, $2f_2$ 0

 IMD2
 $f_1 - f_2$, $f_1 + f_2$ 0

 3rd Harmonic
 $3f_1$, $3f_2$ $\frac{441}{64}h_7a^7 + \frac{25}{16}h_5a^5 + \frac{1}{4}h_3a^3$

 IMD3
 $2f_1 - f_2$, $2f_2 - f_1$ $\frac{735}{64}h_7a^7 + \frac{25}{8}h_5a^5 + \frac{3}{4}h_3a^3$

How to characterize the linearity of the optical modulators?

$$V = a[\sin(2\pi f_1 t) + \sin(2\pi f_2 t)]$$

IMD3 is the most important spurious signal because: It has the largest magnitude It is very close to the fundamental signals

IMD3 suppression at 10% modulation depth

Design of Domain Inverted Modulator

Schematic of the waveguide structure

Simulation of the conversion length

Coupling length :lc=3.55mm at $\lambda=1.55$ µm

Performances of YFDCs with different number of domains

> **Device Fabrication**

Domain Inverted E-O Poling by Pulse Voltage

Key Points:

- E-O poling without top cladding
- Domain inverted poling
- No bottom electrode

-13-

>E-O Polymer Photonic EM Wave Sensor Characterization

RF response @ 1GHz

• Xiaolong Wang, Beom-Suk Lee, Ray T. Chen, "Large Dynamic Range Electromagnetic Field Sensor based on Domain Inverted Electro-Optic Polymer Directional Coupler," Invited Presentation, SPIE Photonics West conference, RF and Millimeter-Wave Photonics (Conference 7936), San Francisco, January 22-27, 2011

$$< S > = \frac{\varepsilon_0 c}{2} E^2$$

where $\varepsilon_0 = 8.854 \times 10^{-12}$ F/m c=3×10⁸ m/s E is the maximum amplitude of the electric field

	Electric Field	RF Power Density
Minimum	30V/m	0.32mW/cm ²
Maximum	4×10 ⁵ V/m	59KW/cm ²

Solicitation Requirement: milliwatts per square centimeter to kilowatts per square centimeter

Exactly Matched!

IMD3 Suppression

22dB higher average IMD3 suppression from 10%~50% modulation depth

MZ Modulator

Linear Modulator

47dB higher IMD3 suppression (a) 20% modulation depth

• Boem-Suk Lee, Che-Yun Lin, **Xiaolong Wang**, Jingdong Luo, Alex K.Y. Jen, and Ray T. Chen, "Bias-free electro-optic polymer based two-section Y-branch waveguide modulator with 22-dB linearity enhancement," *Optics Letters*, Vol.34, No.21, pp.3277-3279 (2009)

Spurious Free Dynamic Range

Range (SFDR)

 Beomsuk Lee, Xiaolong Wang, Ray T. Chen, and Raluca Dinu,
 "Electro-Optic Polymer Y-Brunch Directional Coupler Modulator with High Linearity," submitted to *IEEE Photonic Technology Letters*

11dB higher SFDR!

Small Signal Modulation Measurement

Frequency range ~26.5GHz

3-dB electrical bandwidth ~ 10GHz