Photonic Crystal Microarray Nanoplatform for High-Throughput Detection of Biomolecules

Swapnajit Chakravarty ¹, Wei-Cheng Lai ², Kathryn Moncivais³, Xiaolong (Alan) Wang ¹, Che-Yun Lin², Zhiwen J. Zhang³, Ray T. Chen ^{1,2}

¹ Omega Optics, 10306 Sausalito Drive, Austin, TX 78759
 ² Dept. of Electrical and Computer Engineering, University of Texas, Austin
 ³ College of Pharmacy, University of Texas, Austin

Funded by National Cancer Institute SBIR Contract #: HHSN261201000085C

Motivation

Microarrays are omnipresent in the field of medical diagnostics

• Protein Microarray, DNA Microarray, RNA Microarray, etc...

Desired Microarray Characteristics

- No background noise from non-specific binding
- Multiple probe-target conjugates
- Real Time Detection: Binding or non-binding of all probe-target conjugates studied simultaneously
- Label Free platform to reduce complexities of binding chemistry as well as cost.

Label-Free Microarrays

- Surface Plasmon Resonance (SPR) commercialized by Biacore
- All other label-free techniques still in research or prototype development phase.

On-Chip Label-Free Biomolecule Microarray Platforms

Ring Resonator Array

Fig. 2. High-level architecture of the biosensing platform.

Iqbal et al, IEEE JSTQE **16** (3), 654 (2010)

200000000000000 0000000000000000000000	500000000000000 0000000000000000000000

Interferometer Array with Wire Waveguides

Guillermain et al, Mater. Res. Soc. Symp. 1191, 1191-OO-06 (2009)

>What is Photonic Crystal?

- **Periodic** electromagnetic media comparable to wavelength
- With photonic band gaps: "optical insulators"

1-D grating =1-D PhC 2-D PhC =2-D grating 3-D PhC =3-D grating Similar to: Semiconductors

Defect structures can introduce defect mode inside the photonic bandgap Similar to: Doping of Semiconductor

can trap light in cavities

and waveguides ("wires")

Comparison of Existing Bio-sensing Technologies on Photonic Crystal Platform

Research Group	Mandal et al. (Optics Express 16(3), 1623 (2008))	Guillermain et al. (Mater. Res. Proc. Symposium 1191- OO11-06 (2009))	Zlatanovic et al. (Sensors and Actuators B 141, 13 (2009)	Omega Optics Photonic Crystal MicroArray
Technology	1D photonic crystal sensor array	2D photonic crystal with 2 microcavities	2D photonic crystal with single microcavity	2D photonic crystal with multiple microcavities
Microcavity Q in bio-ambient	~3000 in water (no biomolecules)	400-500	425	~3430 (demonstrated)
Sensitivity			20pM	
<pre># parallel measurements demonstrated (high throughput related)</pre>	1	2* (same bio- molecule coated)	1	Theoretically unlimited, Target: 96 spots.

Photonic Crystal Microarray Based Nanoplatform for High Throughput Detection

Principle of Operation:

- Multiple photonic crystal microcavities are patterned along length of photonic crystal waveguide •
- Each photonic crystal microcavity has unique resonance wavelength •
- **Resonance wavelength is a strong function of refractive index** ٠
- A photonic crystal microcavity adjacent to a photonic crystal waveguide traps its corresponding • resonance wavelength; the wavelength is thus dropped from output transmission of waveguide
- Refractive index changes in the vicinity of an individual photonic crystal microcavity shifts the • resonance wavelength 6

Photonic Crystal Microarray Based Nanoplatform for High Throughput Detection of Cancers

Principle of Operation:

- Multiple photonic crystal microcavities are patterned
- Each photonic crystal microcavity has unique resonance wavelength
- Multiple dropped wavelengths in output transmission spectrum
- Each photonic crystal microcavity is coated with a unique receptor biomolecule
- Target biomolecule binds specifically to unique receptor on unique microcavity, which shifts the unique dropped wavelength, hence the biomolecule is detected.

Photonic Crystal Fabrication

Large Beam Shit = Of

WD = 62mm

Mix Signal = 0.2000

Signal B = InLen

Date 21 Oct 2010

8

Transmission Measurements

1nm shift for 1nM binding

In contrast, over 25 mins, ~0.1nm shift observed for 1.2nM binding

[1] Zlatanovic et al, Sens. & Actuators B-Chem 141, 13 (2009)

Biomolecule Patterning Procedure

Summary

2D Photonic Crystal Single Waveguide Coupled Multiple Microcavity based Microarray enables:

- Simultaneous / parallel measurement of multiple mutually unique binding spots, simultaneously on-chip
- Biomolecule functionality preserved in aqueous phase
- Fast analysis and response time
- Miniaturization
- Feature dimensions achievable by 193nm photolithography, nano-imprint lithography
- CMOS platform--- low cost during high volume manufacturing

Comparison of Existing Microarrays

Company	Biacore Life Sciences (Surface Plasmon Resonance) Biacore 4000	NEB (ELISA) Pathscan Phospho- Ret Sandwich ELISA Kit	Photonic Crystal MicroArray
Label-Free	Yes	No	Yes
Target protein Requirement	3-10 micro-gram/ spot	100 micro-gram - 1mg/spot	4.5 fg/spot [1]
Principle of Interaction	Dynamic	Thermodynamic	Dynamic
Sensitivity	100pM	1micro-molar	< 20pM [2]
Sample Solution Requirement	60 micro-liters	250 micro-liters	Nano-liters
# of Spots	384 different spots	96 different spots	Theoretically unlimited, different spots
Cost	\$80K / unit	\$35K /unit	~\$40K
# Spots /Measurement	1	1	>96
Time to measure /spot	18 seconds per spot	Minimum 2 hrs for incubation	10 seconds per 96 spots

[1] Zlatanovic et al, Sens. & Actuators B-Chem 141, 13 (2009)