

Scientific novelty and Uniqueness: >Nanomembrane lithography to form **3D well-aligned silicon** nanomembranes Manufacturable process to form nanowires, photonic crystal waveguides and plasmonic structures on nanomembranes >2D Ultracompact phase locked laser array on silicon as a light source for **Optical Phased Array (OPA)** >Ultracompact structure provides large steering angles to ± 70° in both azimuth and elevation directions for **Optical Phased Array (OPA)** Slow photon in PCW provides a group index above 300 and provides tunable delay time from 0 to 32 nsecs suitable for phased array antenna applications

Progress of Silicon Nanophotonics

Integrated	Raman A Conv. UCLA	1 Gb/sec Si Modulator Intel	10Gb/sec Si Modulator Intel/Luxtera	1Gb/s PCW Modulator (20 pJ/bit) UT		10Gb/s PIN Modulator (5 pJ/bit) IBM	
Campbell	Dual Grating	30 GHz Si-Ge Photo- detector	39 GHz Si-Ge Photo- delector U. Stuttgart	Broadband Amplifier Cornell	30Gb/sec Si Modulator Intel	>1Gb/s CAP Modulator (0.54 pJ/bit) UT	
Inverted Taper NTT, Cornell	Directional Coupling Surrey	IBM	Low power PCW Modulator IBM & UT	Hybrid Si Laser UCSB/intel	Si Nano- membrane Array UIUC	Cascaded Si Raman Laser Intel	
	PCW Loss < 25 dB/cm IBM	PCW Loss < 7 dB/cm IBM, Festa, NTT	PCW Loss < 3dB/cm NTT		20dB loss reduction for slot-PCW UT		
	The highlight research projects are accomplished by Nanophotonics and Optical Interconnects Research Lab at UT-Austin						
2002	2003	2004	2005	2006	2007	2008	

Gigahertz *p-i-n* Diode Embedded Silicon Photonic Crystal Mach Zehnder Interferometer (MZI) Modulator

Lanlan₃Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen "High speed silicon photonic crystal waveguide modulator for low voltage application," *Applied Physics Letters*, 90, 071105 (2007).

SEM Micrographs & Key Facilities

SEM Micrographs & Key Facilities

JEOL JBX-6000FS/E E-Beam Nano-Lithography

FEI Strata DB235 Dual Beam SEM/FIB Nano-characterization System

Plama-Therm 790 Si and SiO_2 Reactive Ion Etching (RIE)

Detailed Approaches

Fully Embedded Board Level Optical Interconnection

Unique Architecture for Optical PWB (Printed Writing Board) ; All the optical components are interposed inside the PCB Solve the package problem / Reduce Cost Effects

Lamination of Optical Waveguide Film & Integration of Thin Film VCSEL

12-Channel Polymer Waveguide & 45° Micro-Mirror

Cross Section View of Laminated Optical Layer

> Cu Transmission Lines for VCSEL (or PD) Integration

Photonic crystal structure in nature

Opal, the best known periodical structure in nature.

3D Photonic Crystal

Photonic Bandstructure

Wavevector

3D Photonic Crystal with Defects

